Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair.
نویسندگان
چکیده
Reconstituted type I collagen fibres have received considerable interest as tendon implant materials due to their chemical and structural similarity to the native tissue. Fibres produced through a semi-continuous extrusion process were cross-linked with different concentrations of the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS). Tensile properties of the fibres were considered, along with imaging of both surface structure and fibrillar alignment. Resistance of the fibres to bacterial collagenase was investigated and fibre sections seeded with human tendon cells for biological characterization, including cell adhesion and proliferation. The work clearly demonstrated that whilst the concentration of EDC and NHS had no significant effect on the mechanics, a higher concentration was associated with higher collagenase resistance, but also provided a less attractive surface for cell adhesion and proliferation. A lower cross-linking concentration offered a more biocompatible material without reduction in mechanics and with a potentially more optimal degradability.
منابع مشابه
The process of EDC-NHS Cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment.
We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy (AFM) and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a...
متن کاملThe Effect of Space Fillers in the Cross-Linking Processes of Bioprosthesis
Glutaraldehyde (GA) is largely used in the cross-linking of collagen matrices to improve their mechanical and biological properties for applications in cardiovascular surgery. However, GA has major drawbacks, including graft degeneration, calcification, and durability. The aim of this study was to test the hypothesis that filling the interstitial space in the bovine pericardium with various spa...
متن کاملComparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) alone, and in combination with N-hydroxysuccinimide (NHS) or sulfoNHS were employed for crosslinking anti-human fetuin A (HFA) antibodies on 3-aminopropyltriethoxysilane (APTES)-functionalized surface plasmon resonance (SPR) gold chip and 96-well microtiter plate. The SPR immunoassay and sandwich enzyme linked immunosorbent immunoassay (ELISA...
متن کاملEnhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges.
Collagen porous scaffolds have been widely employed as a dermal equivalent to induce fibroblasts infiltration and dermal regeneration. To eliminate the disadvantageous drawback of the fast degradation speed, a cross-linking method was adopted by using a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) and N-hydroxysuccinimide (NHS) in the presence of amino acids...
متن کاملThe synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen
Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Regenerative biomaterials
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2015